Evolution and mixing of asymmetric Holmboe instabilities
نویسندگان
چکیده
When a stably stratified density interface is embedded in a region of strong velocity shear, hydrodynamic instabilities result. Here we generalize the stratified shear layer to allow an offset between the centre of the shear layer and the density interface. By including this asymmetry, and keeping the density interface thin with respect to the shear layer, the asymmetric Holmboe (AH) instability emerges. This study examines the evolution and mixing behaviour of AH instabilities, and compares the results to the well-known Kelvin–Helmholtz (KH) and Holmboe instabilities. This is done by performing a series of direct numerical simulations (DNS). The simulation results show that there are two different mixing mechanisms present. The first is a feature of KH instabilities and leads to the mixing and production of intermediate density fluid. The second mixing mechanism is found in AH and Holmboe instabilities and consists of regions of mixing and turbulence production that are located on one or both sides of the density interface. Since the Holmboe-type instabilities do not generate a large-scale overturning of the central isopycnal, the density interface is able to retain its identity throughout the mixing event. The amount of mixing that takes place is found to be strongly dependent on the degree of asymmetry in the flow.
منابع مشابه
Effects of asymmetric stiffness on parametric instabilities of rotor
This work deals with effects of asymmetric stiffness on the dynamic behaviour of the rotor system. The analysis is presented through an extended Lagrangian Hamiltonian mechanics on the asymmetric rotor system, where symmetries are broken in terms of the rotor stiffness. The complete dynamics of asymmetries of rotor system is investigated with a case study. In this work, a mathematical model is ...
متن کاملMixing in Symmetric Holmboe Waves
Direct simulations are used to study turbulence and mixing in Holmboe waves. Previous results showing that mixing in Holmboe waves is comparable to that found in the better-known Kelvin–Helmholtz (KH) billows are extended to cover a range of stratification levels. Mixing efficiency is discussed in detail, as are effective diffusivities of buoyancy and momentum. Entrainment rates are compared wi...
متن کاملShear instabilities in a tilting tube
Shear instabilities were investigated in an exchange flow in a tilting channel. The channel is connected to a freshwater reservoir at one end and a salt water reservoir at the other end. When the channel is initially horizontal, a steady two-layer flow occurs that supports symmetric Holmboe instabilities. When the channel is tilted, as in closed tilting channel experiments, shear increases and ...
متن کاملTurbulent mixing in strongly stratified shear flows
Motivated by the importance of irreversible mixing in geophysical and environmental flows, we seek to understand the dependence of its efficiency under strongly stratified conditions through a seris of direct numerical simulation of Holmboe wave instability under various initial conditions. Our numerical findings demonstrate that while mixing is enhanced when the density layer is much sharper t...
متن کاملUsing Magma Mixing/Mingling Evidence for Understanding Magmatic Evolution at Mount Bidkhan Stratovolcano (South-East Iran)
Mount Bidkhan stratovolcano is located in the central Iranian volcanic belt. It is composed of several types of pyroclastic deposits, lava flows and intrusive bodies. Textural and chemical characteristics of plagioclase phenocrysts from the eruptive products volcanic edifice, record complex magma mixing events over the lifetime of the volcano. Evidences such as xenocrystic high Al+Ti clinopyrox...
متن کامل